Tuesday, February 16, 2010

திருவண்ணாமலை

கடவுளை வணங்கி நல்ல வாழ்க்கை வாழச் சொல்வது சமயம்.

கடவுளை வணங்குவது எப்படி என்று சமயம் சொல்லும்.

நல்ல வாழ்க்கை வாழ்வது எப்படி என்றும் சமயம் சொல்லும்.

நல்ல நினைப்பும் நல்ல பேச்சும் நல்ல செயலும் நல்ல வாழ்க்கைக்கு அடிப்படை.

இவற்றைப் புண்ணியம் என்பார்கள் சான்றோர்கள்.

தீய நினைப்பும் தீய பேச்சும் தீய செயலும் வாழ்க்கையைக் கெடுத்துவிடும்.

இவற்றைப் பாவம் என்பார்கள் சான்றோர்கள்.

புண்ணியம் நமக்கு நன்மை தரும்.

பாவம் நமக்குத் தீமை தரும்.

புண்ணியம் செய்யத் தூண்டுவது கடவுள் நெறி.

பாவம் செய்யாமல் இருக்க உதவுவது கடவுள் நெறி.

கடவுள் நெறியே சமய நெறி.

கங்கை யாடிலென் காவிரி யாடிலென்
கொங்கு தண்கும ரித்துறை யாடிலென்
ஓங்கு மாகட லோதநீ ராடிலென்
எங்கும் ஈசன் எனாதவர்க் கில்லையே.

Names for Powers of 10


Names for Powers of 10

ValuesZero'sNames
1000One
1011Ten
1022Hundred
1033Thousand
1044Myriad
1066Million
1099Billion
101212Trillion
101515Quadrillion
101818Quintillion
102121Sextillion
102424Septillion
102727Octillion
103030Nonillion
103333Decillion
103636Undecillion
103939Duodecillion
104242Tredecillion
104545Quattuordecillion
104848Quindecillion
105151Sexdecillion
105454Septdecillion / Septendecillion
105757Octodecillion
106060Nondecillion / Novemdecillion
106363Vigintillion
106666Unvigintillion
106969Duovigintillion
107272Trevigintillion
107575Quattuorvigintillion
107878Quinvigintillion
108181Sexvigintillion
108484Septenvigintillion
108787Octovigintillion
109090Novemvigintillionn
109393Trigintillion
109696Untrigintillion
109999Duotrigintillion
10100100Googol
10102102Trestrigintillion
10120120Novemtrigintillion
10123123Quadragintillion
10138138Quinto-Quadragintillion
10153153Quinquagintillion
10180180Novemquinquagintillion
10183183Sexagintillion
10213213Septuagintillion
10240240Novemseptuagintillion
10243243Octogintillion
10261261Sexoctogintillion
10273273Nonagintillion
10300300Novemnonagintillion
10303303Centillion
10309309Duocentillion
10312312Trescentillion
10351351Centumsedecillion
10366366Primo-Vigesimo-Centillion
10402402Trestrigintacentillion
10603603Ducentillion
10624624Septenducentillion
10903903Trecentillion
1024212421Sexoctingentillion
1030033003Millillion
1030000033000003Milli-Millillion



Dividing by 5

Dividing by 5

Dividing a large number by five is actually very simple. All you do is multiply by 2 and move the decimal point:

195 / 5

Step1: 195 * 2 = 390
Step2: Move the decimal: 39.0 or just 39

2978 / 5

step 1: 2978 * 2 = 5956
Step2: 595.6

Square a 2 Digit Number Ending in 5

Square a 2 Digit Number Ending in 5

For this example we will use 25

* Take the "tens" part of the number (the 2 and add 1)=3
* Multiply the original "tens" part of the number by the new number (2x3)
* Take the result (2x3=6) and put 25 behind it. Result the answer 625.

Try a few more 75 squared ... = 7x8=56 ... put 25 behind it is 5625.
55 squared = 5x6=30 ... put 25 behind it ... is 3025.

The 11 Rule

The 11 Rule
You likely all know the 10 rule (to multiply by 10, just add a 0 behind the number) but do you know the 11 rule? It is as easy! You should be able to do this one in you head for any two digit number. Practice it on paper first!

To multiply any two digit number by 11:

* For this example we will use 54.
* Separate the two digits in you mind (5__4).
* Notice the hole between them!
* Add the 5 and the 4 together (5+4=9)
* Put the resulting 9 in the hole 594. That's it! 11 x 54=594

The only thing tricky to remember is that if the result of the addition is greater than 9, you only put the "ones" digit in the hole and carry the "tens" digit from the addition. For example 11 x 57 ... 5__7 ... 5+7=12 ... put the 2 in the hole and add the 1 from the 12 to the 5 in to get 6 for a result of 627 ... 11 x 57 = 627
Practice it on paper first!

Number Systems

Number Systems



  • All counting numbers together with 0 are called whole numbers.

  • 0 is the smallest whole number and there is no largest whole number.

  • Our number system is based on counting in tens i.e. it has base 10.
    Every whole number can be written by using the symbols 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 called digits.


  • The place value of a (non-zero) digit depends upon the place it occupies in the number; the place value
    of the digit 0 is always 0 regardless of the place it occupies in the number.

  • The face value of a digit in a number is the digit itself, regardless of the place it occupies
    in the number.

  • Addition properties of whole numbers

    Closure property: If a and b are any whole numbers then a +b is also a whole number.

    Commutative property: If a and b are any whole numbers then a+b= b+a.


    Associative law: If a, b, c are any whole numbers then (a+b)+c = a+(b+c).

  • Multiplication properties of whole numbers

    Closure property: If a and b are any whole numbers then a × b is also a whole number.

    Commutative property: If a and b are any whole numbers then a × b = b × a.


    Associative law: If a, b, c are any whole numbers then (a × b) × c = a × (b × c).

    Distributive law: If a, b, c are any whole numbers then a × (b+c)=a × b + a × c.

  • Division algorithm

    If a is any whole number and b is another
    smaller non-zero whole number then there exist unique whole numbers q
    and r such that
    a = b × q + r where 0 r < b.

Multiply

Multiply 92 by 67
92
x 67
(Mentally) 2x7 is 14; write 4 carry 1;
9x7 +2x6 = 75 +carry 1 = 76; write 6, carry 7
9x6 is 54, add carry 7 to get 61 -so answer is 6164

Multiply 2376 by 4060
2376
x 4060
6x0 = 0; write 0;
7x0 +6x6 = 36; write 6 carry 3;
3x0 +7x6 +6x0 = 42 +carry 3 = 45; write 5 carry 4
2x0 +3x6 +7x0 +6x4 = 42 +carry 4 = 46; write 6 carry 4
2x6 +3x0 +7x4 = 40 +carry 4 = 44; write 4 carry 4
2x0 +3x4 = 12 +carry 4 = 16; write 6 carry 1
2x4 = 8 +carry 1 = 9; write 9. End. Answer is 9646560

Vertically and Crosswise

Multiple:
Question: Multiply 432 by 617.

Answer:

       432

    x 617

   3024

     432

 2592   

 266544



More the number of digits in the numbers, more lines and time you consume.
No more! Using the Sutra "Vertically and Crosswise", you have

Step 1 (mentally, don't write on notebook) : vertically (last digits) :

          2x7=14; write 4 carry 1

Step 2 (mentally) : crosswise (last two digits) :

          3x7 +2x1 = 23 +carry 1 = 24; write 4 carry 2

Step 3 : vertically and crosswise (three digits) :

           4x7 + 3x1 +2x6 = 43 +carry 2 = 45; write 5 carry 4

Step 4 : (move left; first two digits) :

        4x1+3x6 = 22 +carry 4 = 26; write 6 carry 2

Step 5 : (move left; first digit of each number) :

       4x6 = 24 +carry 2 = 26. End.

Write answer : 266544